UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid Lands
نویسندگان
چکیده
The monitoring of invasive grasses and vegetation in remote areas is challenging, costly, and on the ground sometimes dangerous. Satellite and manned aircraft surveys can assist but their use may be limited due to the ground sampling resolution or cloud cover. Straightforward and accurate surveillance methods are needed to quantify rates of grass invasion, offer appropriate vegetation tracking reports, and apply optimal control methods. This paper presents a pipeline process to detect and generate a pixel-wise segmentation of invasive grasses, using buffel grass (Cenchrus ciliaris) and spinifex (Triodia sp.) as examples. The process integrates unmanned aerial vehicles (UAVs) also commonly known as drones, high-resolution red, green, blue colour model (RGB) cameras, and a data processing approach based on machine learning algorithms. The methods are illustrated with data acquired in Cape Range National Park, Western Australia (WA), Australia, orthorectified in Agisoft Photoscan Pro, and processed in Python programming language, scikit-learn, and eXtreme Gradient Boosting (XGBoost) libraries. In total, 342,626 samples were extracted from the obtained data set and labelled into six classes. Segmentation results provided an individual detection rate of 97% for buffel grass and 96% for spinifex, with a global multiclass pixel-wise detection rate of 97%. Obtained results were robust against illumination changes, object rotation, occlusion, background cluttering, and floral density variation.
منابع مشابه
Investigating the Effects of Land Use Changes on Trend of Desertification Using Remote Sensing (Case Study: Abarkooh Plain, Yazd, Iran)
More than one-third of the earth is characterized by arid and semi-arid climate and desertification phenomenon in these areas has been intensified in recent decades. This study aims to investigate the trend of desertification using vegetation indices and Iranian Model of Desertification Potential Assessment (IMDPA) in Abarkooh Plain, Yazd province, Iran. The satellite images (Landsat images in ...
متن کاملAdvanced machine learning methods for wind erosion monitoring in southern Iran
Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...
متن کاملEvaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کاملAnalyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico
Riparian Zones are considered biodiversity and ecosystem services hotspots. In arid environments, these ecosystems represent key habitats, since water availability makes them unique in terms of fauna, flora and ecological processes. Simple yet powerful remote sensing techniques were used to assess how spatial and temporal land cover dynamics, and water depth reflect distribution of key land cov...
متن کاملDetecting new Buffel grass infestations in Australian arid lands: evaluation of methods using high-resolution multispectral imagery and aerial photography
We assess the feasibility of using airborne imagery for Buffel grass detection in Australian arid lands and evaluate four commonly used image classification techniques (visual estimate, manual digitisation, unsupervised classification and normalised difference vegetation index (NDVI) thresholding) for their suitability to this purpose. Colour digital aerial photography captured at approximately...
متن کامل